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Goal of this talk…

• Give brief overview of our work

• Discover possibility for synergy/cooperation

2

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Introduction

• How to detect/discover vulnerabilities in software?

• DAST: dynamic analysis (execution of binary)

‒ vulnerability scanners

‒ fuzz testing

• SAST: static analysis (of source code)

‒ type checking (for information-flow analysis)

‒ static code analysis (Coverity, Fortify, PreFAST, …)

→ rule-based analysis using control/data flow analysis

‒ applying AI

→ learning from code properties
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Vulnerability detection with AI

• Analyse meta-information, ie. metrics derived from

‒ source code (complexity, size)

‒ code repositories (churn, age, comments)

‒ developers (developer activity, fault history)

4

Eg. Software Vulnerability Analysis and Discovery Using Machine-Learning and Data-Mining Techniques: A Survey
Seyed Mohammad Ghaffarian and Hamid Reza Shahriari, ACM Computing Surveys, Vol. 50, No. 4, Article 56, August 2017.

Very modest results
• applicable only for mature 

software systems
• unable to distinguish 

vulnerabilities from defects

• Analyse program code (syntax and/or semantics)
– anomaly detection (look for patterns that do not conform to normal/expected behaviour)
– vulnerable code pattern recognition (look for patterns that relate to abnormal behaviour)
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Lots of research opportunities

• Method

‒ approach (analyse meta-information, program syntax/semantics, hybrid, combi SAST/DAST, …)

‒ AI technique (rule-based, machine learning, deep learning)

‒ type of application and programming language (web applications in PHP and JavaScript,
embedded software in C/C++, general applications in Java or C#, …)

‒ type of vulnerabilities (code injection, buffer overflow, …)

• Questions

‒ How good is it for detecting vulnerabilities?

‒ How does it compare to other methods?

‒ How does it make decisions (explainable)?

‒ How specific/general is it?

‒ How can it be applied in practice?
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Our (ongoing) research

• Team: Arjen Hommersom, Harald Vranken, master students

‒ Discovering XSS and SQLi vulnerabilities in PHP code,
using machine learning (Jorrit Kronjee, 2018) and deep learning (Bart Elema, 2020)

‒ Discovering path traversal and SQLi/XMLi vulnerabilities in C# code,
using code2vec (Mathijssen, 2022)

‒ Discovering memory corruption vulnerabilities in C++ code,
using graph neural networks (De Kraker, 2022) and layerwise relevance propagation (Foeken, 2022)

• Publications

‒ Kronjee, Hommersom & Vranken: Discovering software vulnerabilities using data-flow analysis and 
machine learning (ARES 2018)

‒ De Kraker, Vranken & Hommersom: GLICE: Combining Graph Neural Networks and Program Slicing 
to Improve Software Vulnerability Detection (DevSecOpsRO 2023)
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Our research method

1. Create dataset of code samples (both vulnerable and non-vulnerable samples)

‒ challenge: how to obtain samples?

2. Translate code into some abstract representation (graph/model)

‒ challenge: how to preserve properties that identify vulnerabilities?

3. Transform graph/model into feature vectors

‒ challenge: ML (with feature engineering) or DL?

4. Train a classifier

‒ challenge: what ML/DL model?

5. Evaluate trained classifier

‒ challenge: how to explain false classifications, and how to improve the model?
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Approach
• Apply domain knowledge (ie. security)
• Consider AI methods ‘as is’ (toolbox)
→ primarily security research (applied AI research)
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Case studies

1. Discovering XSS and SQLi vulnerabilities in PHP code using machine learning
Kronjee, Hommersom &Vranken: Discovering software vulnerabilities using data-flow analysis and machine learning
(ARES 2018)

2. Discovering memory corruption vulnerabilities in C++ code using graph neural networks
De Kraker, Vranken & Hommersom: GLICE: Combining Graph Neural Networks and Program Slicing to Improve Software Vulnerability Detection
(DevSecOpsRO 2023)
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Discovering XSS and SQLi vulnerabilities in PHP code

• Inspired by prior work of Fabian Yamaguchi and Konrad Rieck (and others) in Germany and
Lwin Khin Shar and Hee Beng Kuan Tan (and others) in Singapore

• Approach

1. Extract features from PHP source code samples using data-flow analysis

2. Feature selection and supervised machine learning to train various classifiers

3. Perform experiments to evaluate how good it is
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ARES 2018
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Data-flow analysis
• Create AST from source code

• Derive CFG from AST

• Determine reaching definitions and
use-definitions chains

‒ Definition (assignment) on line i
reaches to line j if the variable in i
can reach j without intervening 
definitions

‒ UD chain for use of a variable lists 
all definitions of that variable that 
can reach that use without any 
other intervening definitions

Source code

$x = 5;
$y = 1;
while ($x > 1) {

$y = $x * $y;
$x--;

}

AST FUNC

DECL

=

$x 5

DECL

=

$y 1

WHILE

>

$x 1

PRED STMT

=

$y *

$x $y

--

$x

CFG 1: $x=5

2: $y=1

3: while ($x>1)

4: $y=$x*$y

5: $x--

Reaching definitions
Line IN GEN OUT KILL
1 Ø x1 x1 x5
2 x1 y2 x1,y2 y4
3 x1,x5,y2,y4 Ø x1,x5,y2,y4 Ø
4 x1,x5,y2,y4 y4 x1,x5,y4 y2
5 x1,x5,y4 x5 x5,y4 x1

Use-definition chains
Use UD chain
y4 y2,y4
x5 x1,x5
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Extracting features
• General pattern with XSS and SQLi

‒ tainted data enters application

‒ application does not sufficiently validate and sanitise the data

‒ application uses the data in a vulnerable function

• Tainted data

‒ assume all variables are tainted (except variables of type float, int, double, bool)

‒ feature: consider line of code as tainted if at least one variable on the line is tainted

• Sanitisation

‒ PHP function filter_var() uses constant as second parameter to specify type of filtering

‒ features: use of these constants (like FILTER_SANITIZE_STRING )

• Potentially vulnerable functions

‒ features: function usage (also consider UD chain for data used in function) 11
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Example

line echo
mysql_
close

mysql_
connect

mysql_
fetch_
array

mysql_
query … tainted vulnerable

1 0 0 0 0 0 … 1 0
2 0 0 0 0 0 … 1 0
3 0 0 1 0 0 … 0 0
4 0 0 0 0 0 … 0 0
5 1 0 0 0 0 … 1 0
6 0 0 0 0 1 … 1 1
7 0 0 0 1 1 … 1 1
8 0 0 0 1 0 … 1 1
9 1 0 0 0 0 … 0 0
10 0 1 1 0 0 … 0 0

use UD chain
… …
$result7 $result6
$data8 $data7
… …

1: $student_id = $_GET(´UserData´)

2: $query = ´SELECT * FROM student WHERE id=´.$student_id.´´

3: $conn = mysql_connect(´localhost´,´mysql_user´,´mysql_pswd´)

4: mysql_select_db(´dbname´)

6: $result = mysql_query($query)

5: echo ´query:´.$query.´<br/> <br/>´

7: while ($data = mysql_fetch_array($result))

8: print_r($data)

9: echo ´<br/>´

10: mysql_close($conn)
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Results
• Created dataset of PHP code samples (from NIST NVD and SAMATE) with XSS or SQLi vulnerabilities

• Trained 5 ML classifiers (Random forest, Decision tree, …) separately for SQLi and XSS

• Evaluated classifiers

‒ standard metrics

‒ comparison against other open-source tools

‒ try on PHP code repositories
(identified SQLi in Piwigo, CVE-2018-6883)
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Precision Recall F1-score
Our tool 0.94 0.94 0.94
Pixy 0.86 0.61 0.69
RIPS 0.83 0.80 0.82
WAP 0.83 0.84 0.83
Yasca 0.01 0.10 0.02

Precision Recall F1-score
Our tool 0.79 0.71 0.71
Pixy 0.61 0.61 0.61
RIPS 0.37 0.61 0.46
WAP 0.51 0.58 0.51
Yasca 0.24 0.25 0.24

XSSSQLi
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Case studies

1. Discovering XSS and SQLi vulnerabilities in PHP code using machine learning
Kronjee, Hommersom &Vranken: Discovering software vulnerabilities using data-flow analysis and machine learning
(ARES 2018)

2. Discovering memory corruption vulnerabilities in C++ code using graph neural networks
De Kraker, Vranken & Hommersom: GLICE: Combining Graph Neural Networks and Program Slicing to Improve Software Vulnerability Detection
(DevSecOpsRO 2023)
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Discovering buffer overflows in C++ code

• Inspired by prior work of Chinese researchers at Huazhong University of Science and Technology 
(SySeVR, VulDeepecker) and Northwest University (FUNDED)

• Approach

1. Apply program slicing

• program slice contains all statements on which arguments of a function call depend

• similar to SySeVR, but consider call tree of multiple functions instead of single function

2. Transform program slide into Graph Neural Network (GNN)

• similar to FUNDED, but with support for more language constructs and bug fixes

3. Train classifier (GLICE)

4. Perform experiments to evaluate how good it is
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DevSecOpsRO 2023
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Example
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Results
• Created dataset of C++ code samples (from NIST NVD and SARD) with buffer overflow vulnerabilities

• Derived program slices from code samples (for set of potentially vulnerable functions, eg. strcpy)

• Trained GLICE model

• Experimental results

‒ comparison against original FUNDED model

‒ evaluate trade-off call-tree depth vs.
detection performance vs. resource usage

• Detection accuracy of GLICE improves
up to 13% when compared to FUNDED,
while training time for GLICE model is
about 9 times smaller (target depth 4)
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Thanks!

Any questions?

Contact:

 harald.vranken@ou.nl

 www.open.ou.nl/hvr
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