
AFFECT.NL - Automated Finding, Fixing or Exploiting of seCuriTy vulnerabilities
June 14, 2023, Radboud University

Detecting vulnerabilities
in source code with AI
Harald Vranken & Arjen Hommersom

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Goal of this talk…

• Give brief overview of our work

• Discover possibility for synergy/cooperation

2

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Introduction

• How to detect/discover vulnerabilities in software?

• DAST: dynamic analysis (execution of binary)

‒ vulnerability scanners

‒ fuzz testing

• SAST: static analysis (of source code)

‒ type checking (for information-flow analysis)

‒ static code analysis (Coverity, Fortify, PreFAST, …)

→ rule-based analysis using control/data flow analysis

‒ applying AI

→ learning from code properties

3

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Vulnerability detection with AI

• Analyse meta-information, ie. metrics derived from

‒ source code (complexity, size)

‒ code repositories (churn, age, comments)

‒ developers (developer activity, fault history)

4

Eg. Software Vulnerability Analysis and Discovery Using Machine-Learning and Data-Mining Techniques: A Survey
Seyed Mohammad Ghaffarian and Hamid Reza Shahriari, ACM Computing Surveys, Vol. 50, No. 4, Article 56, August 2017.

Very modest results
• applicable only for mature 

software systems
• unable to distinguish 

vulnerabilities from defects

• Analyse program code (syntax and/or semantics)
– anomaly detection (look for patterns that do not conform to normal/expected behaviour)
– vulnerable code pattern recognition (look for patterns that relate to abnormal behaviour)

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Lots of research opportunities

• Method

‒ approach (analyse meta-information, program syntax/semantics, hybrid, combi SAST/DAST, …)

‒ AI technique (rule-based, machine learning, deep learning)

‒ type of application and programming language (web applications in PHP and JavaScript,
embedded software in C/C++, general applications in Java or C#, …)

‒ type of vulnerabilities (code injection, buffer overflow, …)

• Questions

‒ How good is it for detecting vulnerabilities?

‒ How does it compare to other methods?

‒ How does it make decisions (explainable)?

‒ How specific/general is it?

‒ How can it be applied in practice?
5

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Our (ongoing) research

• Team: Arjen Hommersom, Harald Vranken, master students

‒ Discovering XSS and SQLi vulnerabilities in PHP code,
using machine learning (Jorrit Kronjee, 2018) and deep learning (Bart Elema, 2020)

‒ Discovering path traversal and SQLi/XMLi vulnerabilities in C# code,
using code2vec (Mathijssen, 2022)

‒ Discovering memory corruption vulnerabilities in C++ code,
using graph neural networks (De Kraker, 2022) and layerwise relevance propagation (Foeken, 2022)

• Publications

‒ Kronjee, Hommersom & Vranken: Discovering software vulnerabilities using data-flow analysis and 
machine learning (ARES 2018)

‒ De Kraker, Vranken & Hommersom: GLICE: Combining Graph Neural Networks and Program Slicing 
to Improve Software Vulnerability Detection (DevSecOpsRO 2023)

6

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Our research method

1. Create dataset of code samples (both vulnerable and non-vulnerable samples)

‒ challenge: how to obtain samples?

2. Translate code into some abstract representation (graph/model)

‒ challenge: how to preserve properties that identify vulnerabilities?

3. Transform graph/model into feature vectors

‒ challenge: ML (with feature engineering) or DL?

4. Train a classifier

‒ challenge: what ML/DL model?

5. Evaluate trained classifier

‒ challenge: how to explain false classifications, and how to improve the model?
7

Approach
• Apply domain knowledge (ie. security)
• Consider AI methods ‘as is’ (toolbox)
→ primarily security research (applied AI research)

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Case studies

1. Discovering XSS and SQLi vulnerabilities in PHP code using machine learning
Kronjee, Hommersom &Vranken: Discovering software vulnerabilities using data-flow analysis and machine learning
(ARES 2018)

2. Discovering memory corruption vulnerabilities in C++ code using graph neural networks
De Kraker, Vranken & Hommersom: GLICE: Combining Graph Neural Networks and Program Slicing to Improve Software Vulnerability Detection
(DevSecOpsRO 2023)

8

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Discovering XSS and SQLi vulnerabilities in PHP code

• Inspired by prior work of Fabian Yamaguchi and Konrad Rieck (and others) in Germany and
Lwin Khin Shar and Hee Beng Kuan Tan (and others) in Singapore

• Approach

1. Extract features from PHP source code samples using data-flow analysis

2. Feature selection and supervised machine learning to train various classifiers

3. Perform experiments to evaluate how good it is

9

ARES 2018

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Data-flow analysis
• Create AST from source code

• Derive CFG from AST

• Determine reaching definitions and
use-definitions chains

‒ Definition (assignment) on line i
reaches to line j if the variable in i
can reach j without intervening 
definitions

‒ UD chain for use of a variable lists 
all definitions of that variable that 
can reach that use without any 
other intervening definitions

Source code

$x = 5;
$y = 1;
while ($x > 1) {

$y = $x * $y;
$x--;

}

AST FUNC

DECL

=

$x 5

DECL

=

$y 1

WHILE

>

$x 1

PRED STMT

=

$y *

$x $y

--

$x

CFG 1: $x=5

2: $y=1

3: while ($x>1)

4: $y=$x*$y

5: $x--

Reaching definitions
Line IN GEN OUT KILL
1 Ø x1 x1 x5
2 x1 y2 x1,y2 y4
3 x1,x5,y2,y4 Ø x1,x5,y2,y4 Ø
4 x1,x5,y2,y4 y4 x1,x5,y4 y2
5 x1,x5,y4 x5 x5,y4 x1

Use-definition chains
Use UD chain
y4 y2,y4
x5 x1,x5

10

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Extracting features
• General pattern with XSS and SQLi

‒ tainted data enters application

‒ application does not sufficiently validate and sanitise the data

‒ application uses the data in a vulnerable function

• Tainted data

‒ assume all variables are tainted (except variables of type float, int, double, bool)

‒ feature: consider line of code as tainted if at least one variable on the line is tainted

• Sanitisation

‒ PHP function filter_var() uses constant as second parameter to specify type of filtering

‒ features: use of these constants (like FILTER_SANITIZE_STRING )

• Potentially vulnerable functions

‒ features: function usage (also consider UD chain for data used in function) 11

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Example

line echo
mysql_
close

mysql_
connect

mysql_
fetch_
array

mysql_
query … tainted vulnerable

1 0 0 0 0 0 … 1 0
2 0 0 0 0 0 … 1 0
3 0 0 1 0 0 … 0 0
4 0 0 0 0 0 … 0 0
5 1 0 0 0 0 … 1 0
6 0 0 0 0 1 … 1 1
7 0 0 0 1 1 … 1 1
8 0 0 0 1 0 … 1 1
9 1 0 0 0 0 … 0 0
10 0 1 1 0 0 … 0 0

use UD chain
… …
$result7 $result6
$data8 $data7
… …

1: $student_id = $_GET(´UserData´)

2: $query = ´SELECT * FROM student WHERE id=´.$student_id.´´

3: $conn = mysql_connect(´localhost´,´mysql_user´,´mysql_pswd´)

4: mysql_select_db(´dbname´)

6: $result = mysql_query($query)

5: echo ´query:´.$query.´<br/> <br/>´

7: while ($data = mysql_fetch_array($result))

8: print_r($data)

9: echo ´<br/>´

10: mysql_close($conn)

12

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Results
• Created dataset of PHP code samples (from NIST NVD and SAMATE) with XSS or SQLi vulnerabilities

• Trained 5 ML classifiers (Random forest, Decision tree, …) separately for SQLi and XSS

• Evaluated classifiers

‒ standard metrics

‒ comparison against other open-source tools

‒ try on PHP code repositories
(identified SQLi in Piwigo, CVE-2018-6883)

13

Precision Recall F1-score
Our tool 0.94 0.94 0.94
Pixy 0.86 0.61 0.69
RIPS 0.83 0.80 0.82
WAP 0.83 0.84 0.83
Yasca 0.01 0.10 0.02

Precision Recall F1-score
Our tool 0.79 0.71 0.71
Pixy 0.61 0.61 0.61
RIPS 0.37 0.61 0.46
WAP 0.51 0.58 0.51
Yasca 0.24 0.25 0.24

XSSSQLi

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Case studies

1. Discovering XSS and SQLi vulnerabilities in PHP code using machine learning
Kronjee, Hommersom &Vranken: Discovering software vulnerabilities using data-flow analysis and machine learning
(ARES 2018)

2. Discovering memory corruption vulnerabilities in C++ code using graph neural networks
De Kraker, Vranken & Hommersom: GLICE: Combining Graph Neural Networks and Program Slicing to Improve Software Vulnerability Detection
(DevSecOpsRO 2023)

14

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Discovering buffer overflows in C++ code

• Inspired by prior work of Chinese researchers at Huazhong University of Science and Technology 
(SySeVR, VulDeepecker) and Northwest University (FUNDED)

• Approach

1. Apply program slicing

• program slice contains all statements on which arguments of a function call depend

• similar to SySeVR, but consider call tree of multiple functions instead of single function

2. Transform program slide into Graph Neural Network (GNN)

• similar to FUNDED, but with support for more language constructs and bug fixes

3. Train classifier (GLICE)

4. Perform experiments to evaluate how good it is

15

DevSecOpsRO 2023

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Example

16

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Results
• Created dataset of C++ code samples (from NIST NVD and SARD) with buffer overflow vulnerabilities

• Derived program slices from code samples (for set of potentially vulnerable functions, eg. strcpy)

• Trained GLICE model

• Experimental results

‒ comparison against original FUNDED model

‒ evaluate trade-off call-tree depth vs.
detection performance vs. resource usage

• Detection accuracy of GLICE improves
up to 13% when compared to FUNDED,
while training time for GLICE model is
about 9 times smaller (target depth 4)

17

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/


Thanks!

Any questions?

Contact:

 harald.vranken@ou.nl

 www.open.ou.nl/hvr

18

http://creativecommons.org/licenses/by-nc-sa/3.0/nl/
mailto:harald.vranken@ou.nl
http://www.open.ou.nl/hvr

	Detecting vulnerabilities�in source code with AI
	Goal of this talk…
	Introduction
	Vulnerability detection with AI
	Lots of research opportunities
	Our (ongoing) research
	Our research method
	Case studies
	Discovering XSS and SQLi vulnerabilities in PHP code
	Data-flow analysis
	Extracting features
	Example
	Results
	Case studies
	Discovering buffer overflows in C++ code
	Example
	Results
	Thanks!

